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STATEMENT OF THE PROBLEM 

The management of random outcomes in stochastic simulation, coupled with the 
option to track multiple outcomes of stochastic events, was proposed as a way of obtaining 
more information about the outcome space of a combat simulation than could be achieved 
by random stochatic choices as is normally done. This project was intended as an 
exploration of this concept to see whether the technique could be practically implemented, 
and whether it would achieve worthwhile benefits. 

The problems included both implementation issues and usefulness issues. Creating 
additional trajectories for a simulation at random events involves potentially multiple returns 
from the random choice mechanism for each call. A class and object structure was sought 
to hide the multitrajectory implementation behind a facade that would allow programming 
as if the simulation were conventionally stochastic. This proved a more difficult challenge 
than expected. 

The second issue was whether the management techniques used to prevent 
unbounded combinatoric explosion in the face of many events would still deliver results 
that were more useful, given the computational resources used, than would stochastic 
simulation. This issue was explored in the context of a force of force simulation, with 
Eagle (a simulation used for analysis at the U.S. Army Concepts Analysis Agency) being 
the exemplar to provide a context. 

These issues were pursued by building a simple prototype simulation "eaglet" in 
C++ that resembled Eagle in certain essential features, implementing the class structures 
and features to support multitrajectory simulation, and exercising the simulation for a small 
scenario about the scale of the smaller Eagle scenarios. 

SUMMARY OF THE MOST IMPORTANT RESULTS 

We found that it is indeed possible to encapsulate the multitrajectory features in a 
class structure in C++ that allows the programmer to develop functional model code as if it 
were stochastic. However, there were problems in the use of local variables when the state 
context changes on the second return from a "chooser" (that resolves the random event) in a 
multitrajectory event. The most troubling aspect became known as the "this" problem. In 
C++ the local variable "this" points to the current object. Upon return from a 
multitrajectory event, "this" incorrectly points to the current object, but in the wrong 
trajectory. This cannot be easily fixed because in C++ "this" is not writable. A discipline 
was developed that allows these problems (including the "this" problem) to be avoided. A 
cleaner interface would be desirable, but could not be developed within the scope of this 
project. 

The multitrajectory technique, with a variety of choice management options, was 
explored in the context of a very simple four unit scenario and a larger scenario of about 40 
units. The smaller scenario allowed exhaustive comparison of all possible outcomes, 
which was particularly useful for verification. It also gave encouraging results for cases 
where resources are available to cover a large proportion of the outcome space, showing 
that the multitrajectory approach gives more information about the outcome space than 
larger amounts of computation applied to randomly determined trajectories. 

For the mid-sized scenario, results were less conclusive, because the scenario could 
never be made to operate correctly on the larger target machines. Consequently tests were 
limited to 800 states, which was a small proportion of the outcome space. Nevertheless, a 



combination of multitrajectory and stochastic event resolution strategy gave better results 
than a purely stochastic simulation with the same number of trajectories. These tests 
pointed out the need for more research in the trajectory management heuristics, and the 
issues of scaling in general. 

A more detailed report of results can be found in Appendix A. 
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APPENDIX A Annotated Final Report Briefing 

Combat Simulation Trajectory Management 

Final Report 

25 July 1996 

John B. Gilmer Jr. 
Frederick J. Sullivan 

Department of Electrical and Computer Engineering 
Department of Mathematics and Computer Science 

Wilkes University 
Wilkes-Barre, PA 18766 

(717)831-4885 

This report was delivered to the Deputy Undersecretary of the Army for Operations 
Research, the Hon. Walt Hollis. A somewhat more detailed version was delivered to Mr. 
Vindiver, Head, U.S. Army Concepts Analysis Agency on 16 July. 

The Multitrajectory Concept 
Conventional Simulation: 

I F)raw nnmlvr  I 

Each replication gives only one outcome, 
randomly determined 

Multi-Trajectory Simulation: 

State 
P=.3 
 ►/RandomV*^' 

yyvent ./""N^^ 

State 
P=.2 

State 
P=.l 

Each replication gives numerous outcomes, 
characterized by their probabilities 

The principle behind this project is the generation of multiple trajectories from random 
events. The word "event" is used for the point in a simulation at which a random choice 
may be made, resulting in possibly different outcomes. This is not identical to the meaning 
in the sense of "event sequenced" simulation. If the probabilities of the various outcomes 
of an event are known, one can keep track of the probabilities of the various trajectories. 



Motivation for Multitrajectory Simulation 
Simulation needs to represent the real world, 

but need not operate like the real world. 

Real world: Only one trajectory 

For the Analyst: We would like to understand 
all of the possible trajectories 
and their probabilities 

Motivation: Treat simulation as a tool to address the analyst's 
problem rather than one that operates like the real world. 

We have also been concerned with the effects of "chaos" 
in simulation response, and would like a tool that would be 
better able to generate response surfaces that cover a multitude 
of parameters and events more efficiently. 

What we hope an Analyst will 
see at the end of a simulation "run" 

r 

The Range 
of Possible 
Outcomes 
of the       J 
Simulation^ 

V. 

Outcomes represented 
by known final states 
of the Simulation 

Outcomes believed to be 
very similar to known 
final states of the 
Simulation 

^v 
We want these 
to be a large 

.   proportion of 
^■the possible 

outcome space. 

We want high 
confidence that 

Bthese "similar" 
outcomes really 
are close to those 
that we have 

J 
Unknown final states 

The outcome space can be thought of as the full range of possible outcomes given 
randomness in a defined set of events. For those events having randomness that most 
affects the outcome, we would like to have good coverage in our set of final states. Where 
we do not have the actual final states, we would at least like to know that in most cases 
those states we did not retain were similar to those we did follow. There will usually also 
be those that were not followed, perhaps because they were each so improbable, though 
numerous, that the resources to follow them did not seem worthwhile. 



Background: Origins of this Project 
1. Determinism vs Stochastic nature of Combat 

(Discussions during design earlier combat models, early 80's) 

2. Analysis of "Great Battles" wargame combat system- 
Design and implementation of exhaustive analyis software 

3. Concern for analyst's perspective tracing back to Simtech 97 

4. "Chaos" as way of understanding sensitivity of combat models- 
Design and use of "CombatChaos" model to demonstrate this 

Conclusion: Knowing that combat models 
are chaotic does not solve problems. What is 
needed is a way to manage their operation to 
produce useful results in the presence of 
chaotic behavior. Motivation for this effort. 

A number of projects and reports have identified chaos or nonmonotonicity in combat 
simulations as a possible pitfall for analysis. Unfortunately, knowing there is possible 
chaotic behavior is not the same as knowing what to do something about it. 

Chaos Observed in 3 sector Lanchester Model 
x>.33, y>.5 

■4 
x>.33, y=.5 

i 
x=.33, y=.5 

1 4 
Initial Situations 

White: Blue wins 2-1 or more 
Black:   Red wins 2-1 or more 

Equal forces of 100 , 
pk=.005/unit/min. 
10 minute time step 

Proportion of Blue force in Center Sector 

This is an example of such a study, that revealed nonmonotonic responses of a simple 
simulation as initial Blue dispositions vary. The Blue disposition parameters are only two 
of a host of parameters and event outcomes that can be thought of as random. Parametric 

studies such as this are inadequate to address all of these possible sources of variation. 



Combat Simulation Trajectory Management 

Funding: From CAA via ARO, $47,615 
Duration: 1 year (July 95 to June 96) 

Staffing: Principal investigator (J. Gilmer) 1/4 time 
Investigator (F. Sullivan) 1/12 time 
Graduate Research Assistant      1/2 time 

Objective: Examine experimentally the concept of 
Multitrajectory Simulation and determine its practicality 
and benefit for large scale combat simulation 

We hope to show that by explicitly controlling the treatment 
of probabilistic events, we will convey more information to 
the analyst at lower cost than with multiple stochastic 
replications. Furthermore, we expect to show that this is 
practical in terms of software development. 

Combat Simulation Trajectory Management 
Project Tasks 

Task 1.1 Define objectives and characteristics 
for the surrogate simulation. 

Task 1.2 Develop the prototype simulation. 

Task 1.3 Perform initial replications to characterize 
the simulation. 

Task 2.1 Assess the simulation's behavior against the prototypes. 

Task 2.2 Assess simulation trajectory behaviors under a 
stochastic distribution of critical event outcomes. 

Task 2.3 Implement an Initial trajectory management technique 
based on similarity and pruning. 

Task 2.4 Evaluate the effectiveness of proposed management 
techniques 

As the project developed, and due to the availability of Dr. Frederick J. Sullivan, it was 
possible to focus more on implementation issues than originally expected. Thus, we were 
able to develop a much more comprehensive foftware approach than originally anticipated. 
Unfortunately, the new prototype could not be made to operate on the Silicon Graphics 
machines of the Wilkes Simulation Lab, so that the larger scale tests could not be carried 
out. 

10 



Issues and Approaches 
The basic problem: Exponential explosion 

in the number of states as the number 
of random events grows large. 

Suppose each random event has only two possible outcomes: 
After only 10 events, 1024 states have been created. 
The average number of states is 205. Both numbers grow rapidly. 

Possible ways to control this problem: 
1. Limit the number of random events 

Reserve explicit treatment of random trajectories 
to "critical" events that result in divergent trajectories 

2. Consolidate identical states, Represent state differences 
These are software techniques for gaining efficiency 

3. Consolidate similar states at some cost in Confidence 
Only the most probable, or most representative, states are 
tracked explixcitly. 

The Surrogate Simulation: "eaglet" 

Intended to resemble Eagle in functional characteristics 

Intended to be much simpler than Eagle 

Written in C++ (due to facilities for handling objects, etc.) 

Functional Characteristics: 
1. Link-Node movement along preplanned routes 
2. Units have "strength" rather than list of weapons 
3. Attrition does reflect front, flank, rear sector allocations 
4. Aquisition loss/gain on enemy units can be stochastic 
5. Units each have "Task" with objective, intent, etc. 
6. Rule based decisionmaking 
7. Time stepped sequencing 

Initial version: Multitrajectory resolution for 5 events: 
Movement selection, attrition, Acquisition gain/loss, 
decisionmaking 

The approach in this project was experimental, but the complexity of the simulation 
software needed to stay bounded for reasons of practicality. The original "Eagle" is written 
in Lisp, but we wished to stay with C++ because of its object handling and availability. 
The representation of functional characteristics in "eaglet" was kept similar to those in 
Eagle, but with great simplification. For example, instead of having a list of items, each 
unit has only abstract units of "force". Where in Eagle units plan routes, in eaglet all routes 
were pre-planned. This allowed better control of the project and managable verification. 

11 



Movement in "eaglet" 
Starting position 

,8 probability 

Deterministic route 
Alternative routes 

At each node, a random event 
chooses the outbound link. 

nodes in 
terrain 

Unlike Eagle, 
eaglet does not represent 

Objective the underlying link/node representation of 
terrain, since we assume this was taken into 
account in deriving routes which, for eaglet, are preplanned. 

Eagle is deterministic, while we needed events in eaglet to represent stochastic processes. 
The "movement selection" event is used to illustrate. In Eagle, a unit would plan a route 
consisting of a number of nodes connected by a single chain of links. A random process 
(if implemented) for generating the route might choose one of a number of different 
possible routes. To avoid having to build a planner, routes in eaglet represent the network 
of possible routes that a stochastic path planner might generate. This structure, as 
illustrated above, is an input. Because it is an input, for this event we can predetermine the 
possible outcomes and their probabilities, which is helpful for verification of the 
multitrajectory event handling software. (This would not be possible for some other 
events.) 

For a unit starting at the point in the upper left corner, there is a .8 chance the unit would 
follow the heavy arrow, and a .2 chance it would go the other way. At other points there 
are other possibilities for random choices. This particular route can be traversed 6 different 
ways. If there were four units following similar routes, and all were resolved with 
multitrajectory events, there would be 1296 possible trajectories if this one event is always 
resolved in a multi-trajectory fashion. 

However, the event could be always resolved deterministically, by always taking the most 
probable path (heavy arrows). Or, as with stochastic simulation, random choices could be 
made. Or, and this is a focus of ongoing research, the way in which such events are 
resolved is managed, to give good coverage ofg the outcome space, while preserving at 
least some of the important variability of interest. 

12 



Multitrajectory Movement Events 
State 0 State 0 k.8 probability 

" Jink 12 

State prior to Unit l's 
arival at Node 2 

State after Unit l's 
arival at Node 2, 
new state for the 
alternative trajectory 

State after Unit l's 
arival at Node 2, 
original state copy 
and trajectory 

Note: State 1 would 
have been created in 
an earlier state 
bifurcation. 

Here we see from a software perspective what happens when a movement selection event is 
resolved in a multitrajectory fashion. At the time the event is recognized, we are in the 
context of a particular trajectory, or state, in this case State 0. Presumably State 1 already 
exists (and possibly others), since State 0 has a probability of .8 rather than 1. In this 
trajectory, Unit 1 has arrived at a point where a choice must be made between two different 
paths, following link 24 or link 25. Since we are resolving this event as multitrajectory, 
both outcomes occur. The original state follows the more probable trajectory (which would 
have been the deterministic choice). We see, though, that the probability of State 0 is now 
changed to .48, reflecting the accumulated probability of being in that trajectory given the 
events so far encountered. 

In addition, a new trajectory, and its state, must be created. In this new trajectory, Unit 1 
takes the other path instead, Link 25. The sum of the trajectories' probabilities is equal to 
that of the trajectory coming into the event. The state variables associated with other units 
in the trajectory would remain unchanged. Note that such a trajectory bifurcation occurs 
for every event, regardless of which unit encounters the event. 

The set of events for which multitrajectory treatment was provided was chosen to cover a 
wide variety of cases typical of those which one might find in an analytic combat 
simulation. The movement selection event shown here has varying numbers of outcomes, 
and the probabilities vary with the particular event. Most other events are simpler. 

13 



Acquisition in "eaglet" 

Radius of detection in deterministic mode 

undetected 
unit 

Area of no 
detection 

event fpr 
tecrion: 

tatoorajectory 
bifurcates 

Acquisition is a binary choice with a constant parameter of .5, the simplest case. Note that 
the algorithm is constructed so that the deterministic choice uses the mean of the range 
limits used for the stochastic case. 

What Has to Happen 

Ji 
> 

Context of State #n 

Multitrajectory 
Event 

Choice 0 i hoice 1 > 

Create new 
State #m 

Do whatever 
for choice 0 
in state #n 

Do whatever 
for choice 1 
in state #m 

J 

Inside the model 
code, we in effect 
need to resolve an 
event in such a way 
that we call a function 
once (in the context 
of state #n) but the 
function returns twice! 
Once for state #n where 
choice 0 was taken, and 
Once for new state #m 
where choice 1 was 
taken, and potentially 
more times if there are 
several choices. 

14 



Even in this simple case, the software problem gets messy. Somewhere in the bowels of 
the code, a "chooser" routine is called to make a choice, hi the multitrajectory case, that 
single chooser call needs to generate two different returns, one for each choice. This is not 
conventional software! This violates a rather fundamental way we expect software to 
behave, and yet this is exactly what we need in order to generate new trajectories cleanly. 

Software Issues: 
How not to manage state bifurcation 

(code buried inside functional module of first prototype) 

if(lose_acq_evt==0){ /* deterministic */ 
Acquisition_list[i]=0; 
N_acquired~;} 

else if(lose_acq_evt==l){ /^stochastic */ 
rand_num=rand()/32768.0; 
if(rand_num<pct_lose) { 

Acquisition_list[i]=0; 
N_acquired~;}} 

else if(lose_acq_evt>=2){ /*multiple */ 
if(p_state- 

>status_event()==LOSE_ACQ_EVT&& 
p_state->status_unit()==Id&& 
p_state->status_itteration()==i){ 

Acquisition_list[i]=0; 
N_acquired~; 
p_state->create_status(0,ld,0);} 

/*reset status*/ 
else{ 

p_new_state=new 
State(p_state,pct_lose);}} 

Somehow, the 
new state has to 
reenter and get 
to this point in 
the code. 

The initial prototype embedded code in the functional routines to handle the creation and 
initialization of new trajectories. It was messy. A lot messier than what you see here, 
since there needs to be a thread of conditional statements that gets you back to this point 
where the new trajectory was generated. The code also gets much more messy if you want 
a variety of management strategies. This was a very early, relatively simple version used in 
the initial prototype before the new class libraries were developed. 

(See figure below) Here we see how a stochastic simulation writer might be inclined to 
code a random choice, and how it needs to be done to support multitrajectory simulation. 
The new multitrajectory class structure developed by Fred Sullivan hides the messy details 
needed in the first prototype. There are differences from how a purely stochastic 
simulation would do things. The most important difference is that the choice mechanism 
needs to understand that what is being done is a binary choice, rather than a continuous 
choice. A random number generator knows less about how its result is used than is 
necessary to support the multitrajectory mechanism. Our objective was to make it relatively 
easy to retrofit multitrajectory techniques into existing simulations. 

15 



Differences in How to Write Code 
for Random Events 

r = randcmO ; 
if(r < .6){ 

do_it(this);} 

Note that the called random 
number function does not know 
that the supplied number will 
simply be used to make a binary 
choice. 

c = bii^zy_choice(.6) 
if(c=0){ 

do_it(this);} 

(This is the goal. In fact, 
it is not quite this simple.) 

Here we express to the called 
function that we are just 
interested in two possible 
outcomes. This is what the 
functional programmer needs to 
do to best support multitrajectory 
simulation. 

The example above is the simplest type of multitrajectory event, a fixed probability binary 
choice, with a probability of doing something (by a call to "do_it") of 60%. The "this" 
variable is the C++ local variable containing the pointer to the current object, typically a 
military unit entity. One of the problems with C++ (for our purposes) is that this "this" 
variable cannot be modified in the code. On the first return from binary_choice, c will be 
zero and "this" will be unmodified: it still points to the same instance of the object as when 
binary_choice was called, since the first return is in the context of the same trajectory, and 
state. However, on the second return from binary_choice, the "this" variable will still point 
to the instance of the object which is in the original trajectory, not the current (c=l) 
trajectory. The preferred solution is to overwrite "this" on the way back from 
random_choice, but it is not possible to do so in C++. An alternative fix is to not use 

Base 
Classes 

Derived 
Classes 

{ 
{ 

Objects 

{Simulation |   j    State 

Eaglet 
Simulation 

Functional 
Model 
Classes 

E 'escriptor 

Acquire 
Chooser 

Note: Avoid pointers as state variables, use ID's instead. 

The simulation 
builder works with 
the derived and 
functional model 
classes. The multi- 
trajectory details 
are mostly in the 
base classes. 
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"this", and substitute another local variable "self instead where "this" would normally be 
used. In this particular case, there really is no problem, since "this" is not used when c=l. 

The object structure puts the actual handlers of events, including the adjustment of 
probability, cloning of states, and such into the base classes that provide the essentials of 
multitrajectory simulation. The functional code writer, who is actually programming the 
representation of movement, attrition, and other simulation model functions, would interact 
with choosers and would have to know very little about the base classes. The simulation 
and its states would also be objects, derived from the base classes. There would have to 
be, for the derived state class, a method that would create the clone of a state. If the 
functional coder needs choosers of a type not provided in the base classes, it could be 
derived, as was done for the "decide" chooser that selects whether a C2 rule fires or not. 

In addition, choice policies for each event type would be controlled by methods that use a 
standard list of possible policies (e.g. always determiunistic, always stochastic, or 
multitrajectory until n states, then deterministic). The choice policy methods could be 
overridden by custom designed policies, for example ones sensitive to Measures of 
Effectiveness of concern in the particular model. 

One restriction is made on the state variables in the state: pointers should not be used. 
Instead of a pointer, use an identifier, e.g. Unit #43 rather than the unit located in memory 
at address 0xffa054e0. This is good practice for other reasons of memory efficiency, 
debugging ease, and a necessity if distributed computing is to be possible. 

Other Multitrajectory Events: 

Acquisition Loss: Never within range of possible detection 
Possible to some outer radius 
Always outside the outer radius 

Attrition:        High, Median, and Low values for losses to a unit 
during a given time step 
OR: High and Low losses (2 vice 3 outcomes) 

Decisionmaking: Rules are evaluated with low, median, high 
criteria for: Effectiveness, Being at/ closing/ 
approaching objective. 
Probability of rule firing depends on how 
many of these criteria are met: 
All: 100% two: 80% one: 40% none: 0% 

As mentioned earlier, a variety of event types were selected for multitrajectory treatment, in 
order to ensure the technique would be able to cover a range of different kinds of random 
results. Perhaps the most important is acquisition gain or loss. This is the event most 
easily modeled as stochastic. 

Attrition is unique among those events treated in that a stochastic resolution is inherently 
more faithful to reality than multitrajectory can be, as it is a case of a continuous chooser. 
The stochastic choice could be any value within some continuous range. It is not possible 
to represent all of the possible outcomes, so some representative outcomes (a few samples) 
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must suffice, for example the mean and plus or minus one standard deviation. As it turned 
out, attrition events were not nearly as important in generating diverging trajectories as the 
others examined, so this event was not examined in detail in our later testing. 

The decisionmaking event concerns whether a rule fires or not. A rationale for assigning 
probabhilities for various rules (perhaps depending on circumstances) was beyond the 
scope of this project. 

A Simple Test Scenario 
Two Blue units attack one Red unit, Another Red unit counterattacks 

,13 =R41T 

Obj, Task 4 

(0,0) Obj, Task 2 

Units 1 and 2 attack abreast toward defensive position held by Unit 3. Tasks 11 and 12 are withdraw 
operations to be executed if either looses effectiveness. 
Unit 3 is to hold its initial defensive position. If it loses effectiveness, it is to delay (Task 13) or 
withdraw toward a point to its rear. 
Unit 4 is to wait until Unit 3 is in combat. It is then to maneuver onto the flank of the Blue units and 
to attack southward. If it loses effectiveness, it is to withdraw toward the NE. If, at its initial 
objective, it finds no targets, it is to continue attacking South. 

The scenario used for initial testing included only four units. Yet it is representative, to the 
simplest extent possible, of the more interesting Eagle scenario on which our scenarios 
were based. The two Blue units attack, and one Red unit attacks on their flank, resulting in 
some interesting maneuver. Resolved deterministically, the battle results in Blue being 
thrown back by the counterattack, with heavy losses on both sides. With multitrajectory 
movement (only), this senario generates 648 trajectories, which proved to be a very 
managable number for debugging, verification, and initial analyses. 

The mid-sized scenario (see following figure) is similar to an Eagle scenario used in a CAA 
study of non-lethal weapons reported by LTC Maymont at the 63rd MORS Symposium. 
In it Blue has a Remote Piloted Vehicle (RPV) which flies around looking for potential 
problems on Blue's flank. If it sees the Red counterattack force, an attack helo squadron is 
called in. The figure does not show the subsequent attack by the other Blue brigade and 
other reactions by Red units in the interest of clarity. Most of the testing did not include 
those subsequent operations. This scenario was never able to run successfully on the 
Silicon Graphics computers of the Wilkes Simulation Lab, limiting the scope of testing that 
could be done within project time and budget constraints. 
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Implications: 
10% of the states 
29% of the states 
40% of the states 

account for 63% of the outcome space 
account for 86% of the outcome space 
account for 96% of the outcome space 

When the small (4 unit) scenario is executed with multitrajectory movement events, we get 
a histogram of state probabilities as shown above. This suggests we can get very good 
outcome space coverage with a small proportion of the states by "truncating" the less 
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probable states. This is done by never creating those trajectories. Events for trajectories 
that are low in probability are "truncated" by resolving them in deterministic (or stochastic) 
fashion rather than by the multitrajectory technique. This results, of course, in incomplete 
coverage of the outcome space; the truncated states are "unknown". 

Trajectory Truncation: 
Random Event 
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Trajectories are truncated: 

Only on™ 
trajectory 

Trajectory "truncated" 
No new state created 

When the probability of the truncated trajectory is small 
enough, and perhaps its metrics unimportant enough, to 

be worth expending resources for computing it. 

The outcome of the event is deterministic or random 

Resources are saved, but some proportion of the outcome space 
(which the truncated state would reach) remains unknown. 

Outcome Space Coverage vs 
Proportion of Truncated States 

I^PTODO rtioh of States'Active      ! 
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Number of Truncated States (Normalized to l.=all possible) 

Here we see the results of truncating various numbers of states. On the left, we keep all 
648. To the right, the proportion ofthat number decreases. The impact on the coverage is 
very small at first, then slopes downward significantly. The approach taken to generate 
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this graph was a very simple choice policy: The choice policy #3 used to generate this data 
is to use multitrajectory techniques until a defined maximum number of states is reached, 
then resolve all events deterministically. A policy that was sensitive to trajectory 
probability might have given a smaller slope to the coverage statistic. Time did not permit a 
closer examination. The overall effect would be to chop off the lower part of the curve 
shown in the probability histogram. However, this choice policy does not do that, ti 
simply stops generating new trajectories at some point, with the consequence of narrowing 
the distribution and shifting it left a bit. There are limits to savings by truncating states, as 
the resulting probability distribution has less and less "tail" of low probability states. 
Taken to its extreme, all states would have about the same probability. 

Comparison of Stochastic, Multitrajectory Outcomes 
Random movement selection 

Small (4 unit) scenario 
648 Stochastic Replications 

(Required 22 seconds) 
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Here we see the impact of random versus multitrajectory choices for the movement event, 
as portrayed as a distribution over an outcome space. The outcome space is plotted in 
terms of Blue loss and Loss Exchange Ratio, with the darkness of the squares being the 
relative probability of states falling in that box. The most probable box in each plot is blac, 
and less probable ones are lighter colors. (Later in the project, and absolute scale was 
adopted, which proved more useful.) For this case, the multitrajectory plot is exhaustive; it 
includes all possible outcomes. Note that it is both faster, and gives a more comprehensive 
set of outcomes, than a similar number of random trajectories. It even does better than five 
times the number of random trajectories. The reason a multitrajectory run for a given 
number of states is quicker than stochastic simulation is the fact that the trajectories are not 
generated until well into the run; initially there is only one trajectory. The choice policy 
influences the growth rate of the number of states, and hence the relative speeds given a 
particular number of final states. 

(See next figure) Another way of reducing the number of trajectories is to "merge" those 
which are similar. This gives some assurance that a "merged" trajectory was similar to one 
that was kept, so this technique is preferred (though quite a bit more expensive) than 
truncation. In our testing, checks to determine state mergers were performed every 25 
minutes of simulated time rather than at 5 minute stime steps used for model functions. 
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Trajectory Merging: 

istance 
small 

Trajectories are merged: 

Only om 
trajectory 

Trajectory "merged" 
The other represents 
both. 

When the probability of a trajectory is small enough, and its 
metrics close enough to some other state, the state is purged 
and the neighbor continues and represents both. 

Resources are saved, but some proportion of the outcome space 
(which the truncated state would reach) remains only 
"expected" to be similar to the known outcome. Merging is 
expensive in the cost of comparing states. 

Characterizing the Outcome Set 
1. Metric for "who wins" etc.: the typical kinds of MOE 

used for simulations, e.g. loss rate, movement 

2. Metrics characterizing the nature of the outcome set: 

a. Distance: the (weighted total) distance between states 

Distance = £ Ixi-xjl + £ lyi-yjl + Z Iforcei-forcejl  
with summations over all units, for states i and j 

b. Metrics that are computationally cheaper as a surrogate 
for the actual distance. (This still needs work) 

If merging is to be done, we need to be able to judge when to states are "close" to each 
other. This requires some sort of metric, since an exhaustive comparison of the actual 
distance, a sum of the differences in all the state variables between two states, would be 
prohibitively expensive. It took a vector of indicators to give a metric that would 
adequately characterize a state, for the purpose of deciding when two states could be 
merged. No doubt more research could result in finding a better, less expensive metric. 
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Distance Surrogate Metric 
An operationally useful surrogate for distance is needed. For the 
case below, a vector difference is taken of the sums of the 
various metric variables (e.g. Blue average X, Y,speed, force,...) 
in each state. The sume of vector component differences is the 
aggregate metric used for estimating actual distance, which is 
the sum of all state vaiable differences. 
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Here we see the actual distances between state pairs compared to the distance metric results. 
This is quite a bit better than earlier metrics; a scalar metric was almost worthless. The 
metric used here has about 16 component indicators including aggregate Blue and Red 
strength, dispersion, mean X and Y location, velocity, and "average" over operational 
posture. 

Effects of Varying Merge Distance 
Criterion 
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Metric distance criterion for merging states (in km or units 

When the value of the distance metric threshold is varied for merging states, we get 
changes in coverage, and in the number of states kept. It is interesting that even very small 
distances allow significant reductions in the number of states, with almost no difference in 
the nature of the outcome space; the average discrepancy between the pruned states and 
their representatives is small. Many of the merged states are probably similar, but result 
from a unit taking one path or another and ending up in pretty nearly the same situation. 
There is a significant jump at "1" for the criterion for reasons that are not now understood. 
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Very likely this profile would vary with scenario. Toward the right, the coverage statistic 
does better than the number of states statistic, which is encouraging. Also, there is no very 
abrupt unbounded rise in the discrepancy statistic, which sufggests that this technique 
should be useful for pruning large numbers of trajectories where necessary. The figure 
below indicates that most pruned trajectories styed close to their surrogates, but the very 
high standard deviation (and a more detailed examination of data) shows that in some cases 
trajectories deviate greatly from their surrogates. A better metric may prove to discriminate 
against such cases better than the one now used. 
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Unfortunately, the version of the simulation that included the state merge capability would 
not run for the larger "mid-sized" scenario, so we were unable to collect this kind of data 
for the larger scenario context. 

(See following figure) The large scenario runs were used to generate plots that give, in 
effect, an estimated probability density function over some space defined by two Measures 
of Effectiveness. Note the difference between this and the outcome plots for the 3 sector 
Lanchester model, which used input parameter variations for the axes, and could only 
portray outcome with respect to variation of two parameters. In this plot, in contrast, we 
reflect the variations due to variability of all events which the analyst has chosen for 
multitrajectory treatment (In this case, all of the movement choice events). 

Note that variations in initial parameters can be thought of as a special case of and event, in 
which the outcome is a particular value for the parameter. In light of that, the 
multitrajectory technique could be thought of as an automated method of generating 
sensitivity analyses, extended to include events that occur dynamically within the 
simulation as well as initial parameters, and using trajectory probability as a method for 
accounting in reconning the importance of various possibilities and managing which 
excursions to examine. 
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Stochastic and Multitrajectory/Deterministic Policy 
for Mid sized scenario 

Stochastic resolution of movement Multitrajectory Movement, 800 states, 
events, 800 replications, treated as each    choice policy 3: All states' events are 
equally probable. resolved M.T. until the state limit of 800 is 

reached, then all events are deterministic. 
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Even though Multitrajectory/deterministic gives greater coverage of the Outcome Space, still 
only a small portion of the outcome space is covered, and the deterministic sampling later in 
the simulation is not representative. 

The results of running the mid-sized scenario revealed the importance of good trajectory 
choice policy. Here we see both the stochastic and multitrajectory (hmited) outcome 
spaces. In contrast to the smaller scenario, the plot reveals a marked organization, with a 
locus of points corresponding to battles in which three Red units (those most involved in 
the battle) were annihilated. The vacant band below results from how unit elimination is 
accounted. If a unit is below 40%, it is considered eliminated and none of its remaining 
strength is counted. This gives a quantum effect. 

Clearly the Stochastic set tells us more about the outcome space. In the small scenario 
case, it was possible for the multitrajectory runs to exhaustively cover the outcome space. 
Here, about three million trajectories would be needed, and the machine used could only 
handle 800. The choice policy used, "policy 3", used multitrajectory resolution for all 
events until there were 800 trajectories, then used deterministic resolution. The "budget" of 
states was exhausted early, before the more interesting variations occurred, so the diversity 
of outcomes was not uncovered nearly as well as with stochastic simulation. Note that the 
scattering of outcomes along the left axis is almost completely missed in the (partially) 
multitrajectory case. However, note that the multitrajectory outcomes show more variation 
in probablility among those outcomes captured. 

For this series of runs, the probability, portrayed as shading, is on an absolute scale rather 
than relative. The "tab" a third of the way up the left axis is an artifact of the display that 
was captured for this figure, as is the pointer arrow. 
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Other Multitrajectory Choice Policies 
for Mid sized scenario 

Multitrajectory Movement, 800 states, Multitrajectory Movement, 800 states, 
choice policy 4: All states' events are choice policy 6: (After 160 states, only 
resolved M.T. until the state limit of 800 is states with p>.00013 have events resolved 
reached; then all events are stochastic. M.T.; other events are stochastic) 
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Both of these convey more information than the simplest choice policy, with policy 4 on 
left giving more information on relative probabilities and policy 6 giving more information 
on structure compared to stochastic case. A choice policy sensitive to battlefield 
outcome MOE's may have done considerably better. 

With other choice policies, we can actually do better than the stochastic case. Indeed, on 
the left we see the results of simply resolving events stochastically (rather than 
deterministically) after the state limit is reached. This has the benefit of ensuring the largest 
variety of trajectories possible up until the state limit is reached; the previous purely 
stochastic case would have some trajectories uncovered, and others duplicated, at the same 
point in the simulation run. 

By rationing the last 80% of the states to the higher probability states, a somewhat more 
sophisticated choice policy, we get the plot shown at the right. This gives somewhat 
greater (though still small) coverage of the outcome space, while still allowing the 
occasional outlier outcome to arise. 

In neither of these cases was there any mechanism to ensure that "interesting" cases were 
captures. This would be a logical extension to the choice policy library. The Measures of 
Effectiveness (MOE's) could be utilized as a metric for deciding whether a state should be 
truncated or not, along with probability and the current number of trajectories. 

Note also that choice policy is set at run time, and controls dynamically how events of a 
given type are resolved. 
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Other Cases for Mid Sized Scenario 
Multitrajectory C2, 800 Multitrajectory for Movement, 
states, Choice policy 3 Decisionmaking, and Acquisition, 
(M.T. until 800 states, then  800 states, choice policy 6 for all. 
deterministic) (Beyond 160 states, M.T. only if 

p>.00013) 
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Here we see the results of using multitrajectory resolution of just the C2 events, rather than 
movement, and the result of using multitrajectory resolution for several events 
simultaneously. 

Analysis Strategies: 
1. Manage trajectories to get most probable outcomes first. 

As more resources are used, less probable outcomes are 
explored. Stop when the coverage meets your goals. 

2. Manage trajectories to ensure that the greatest span of 
outcomes is performed first (evaluated in terms of useful 
MOE). As more resources are used, trajectories having 
intermediate MOE values are explored. Stop when 
coverage meets your goals. 

MOE 

1. Most 
probable 
first 

2. greatest 
span first 

width indicates probability 
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This project could not explore more sophisticated trajectory management strategies such as 
depth first execution of the more probable or interesting states. We imagine an analyst 
using multitrajectory simulation in a background mode, with a display portraying the 
outcome space as illustrated earlier. As more time elapses, more trajectories are brought to 
completion, and the picture gets added detail. The coverage of the outcome space 
increases, and the "shape" of the outcome space becomes clearer. When the analyst is 
satisfied, then the simulation would be halted and the commitment of more resources would 
cease. It should also be possible to click on one of the cells in the outcome space portrayal, 
learn which states gave that result, and their probabilities, then replay those trajectories a 
step at a time to watch the battle unfold. These features have been built into the prototype 
and some auxilliary software. Each state keeps a record of event resolutions, and the 
simulation can be operated in a mode where it merely repeats those events according to that 
script. The "click on" feature, however, is not operational. 

In summary, we believe that the multitrajectory approach is part of a suite of tools that will 
make simulation a more useful tool, with a focus more on the analytic task than the 
intricacies of simulation internals, while adding little to the difficulty of developing 
simulations thanks to the class structure that hides the multitrajectory details. 

Examples of Analytic Use: 
Re-plot for 
different MOE's 

Look at 
details 
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Conclusions 

1 ■ It is possible to build a combat simulation 
capable of multitrajectory simulation, that 
nides the messy details from the application 
programmer. (But not as "clean" as desired.) 

2. Multitrajectory simulation potentially gives 
more information to the analyst at less cost, but 
f resources relative to outcome space size are 

small, careful trajectory management is needed. 

Quantitative results sought still not available; 
the  eaglet prototype not fully functional yet. 

to get the best results. Thus, the issues o?^n<.??.d Ch°'Ce poUc>' **" <* "^ded 
have been identified as pk^hSSta ÄSäS**^ mana«eme°' ^'^cs 

Recommended Further Research 
Investigate scaling issues, with tests involvine uo to 

hundreds of units, and larger span of echelons* 

Improve heuristics for Choice Policy 
When to prune or truncate trajectories as function of MOE's 

Exploration of parallel processing of trajectories- 
Easter to parallelize than single'simulSnTralectory 

Identification of critical events 
Wrth scaling, the focus of what events are critical may shift 

29 

L 


